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Abstract. A model for the spatia-temporal growth of a bacterid colony on the flat surface 
of a solid medium is introduced based on a reaction-difusion equation with vertical and 
lateral growth components. If the colony height is restricted to some maximum value, the 
mlony morphology corresponds to solitary wave propagation in the radial direction. How. 
ever, if colony growth is Run limited by the diffusion of initially separated components into 
the colony, vertical colony growth results from a steady state, finite sized reaction zone 
within the colony. In the flux-limited growth regime a more general colony morphology is 
obtained with constant velocity propagation of the colony radius and central height in 
qualitative agreement with experiment. 

1. Introduction 

The growth of bacterial colonies on the surface of a solid medium is a common process 
and by appropriate variation of the environmental conditions a wide variety of colony 
morphologies can be observed. Extensive experimental studies have been made of the 
colony morphologies for Bacillus subtilus growing on the surface of a thin agar plate 
as a function of the gel strength, nutrient concentration, temperature and humidity 
[ 1,2]. In the absence of mutations, three basic colony morphologies were observed 
corresponding to compact growth, tip-splitting growth and fractal growth. Although 
for colonies of an immotile strain of Bacillus subtilus only compact and fractal growth 
morphologies were found [l]. In general terms, bacterial colonies grown from single 
ceUs on nutrient-poor media show ramified structures, whilst on nutrient-rich media 
the compact colonies have an overall circular shape with a rough edge. Other experi- 
mental studies of the growth of compact colonies of Escherichia coli and Bacillus subtilus 
on agar plates also shown kinetic roughening at the colony edge [3]. Unfortunately, all 
of these studies concentrate on the analyis of a two-dimensional projection of the colony 
on to the flat surface whereas in general, bacterial colonies grown on the surface of a 
growth medium wilI not be a single cell deep. The three-dimensional form of the colonies 
as function of time is less well understood. 

In a pioneering study of the growth kinetics of surface colo'nies of bacteria, F'irt [4] 
observed a virtual constant rate of radial growth for colonies of Escherichia coli, 
Klebsiella aerogenes and Streptococcus faecalis. Wimpenny [ 5 ]  later determined the 
radial height profile for colonies of Bacillus cereus, Escherichia coli and Staphylococcus 
albus of different ages on nutrient agar. In spite of the differences in cell types, the 
colony profiles were seen to have a common basic structure. A steeply rising leading 
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edge and a flat or domed centre whose height grows linearly with time. However, the 
vertical growth rate of the colony at its centre is at least an order of magnitude smaller 
than the radial growth rate of the colony. Subsequently similar observations were also 
made by Kamath and Bungay [ 6 ]  for the growth of yeast colonies on solid media. 

In the follouing section we introduce a model for the spatio-temporal evolution of 
bacterial colonies grown from a localized inoculation on a flat surface. Colony expan- 
sion results from structural reorganization following the growth and division of cells 
within the colony. Thus the model is based upon a reaction-diffusion equation which 
includes a reaction term that allows for colony expansion which is locally normal to 
the suface and for lateral growth anisotropy. A key component of the model is the 
functional form of the normal growth velocity. In section 3 growth is subject to a simple 
restriction of the maximum height of the colony and connection is made with a model 
introduced by Pirt [4]. However, in general, colony growth is limited by the flux of 
oxygen and nutrient into the colony. In section 4 a microscopic model is introduced to 
characterize the flux limited growth of biofilms and support a more general form for 
the normal growth velocity used in section 5 to model the flux limited growth of surface 
colonies. The paper concludes with a discussion. 
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2. Model 

In unstirred media, since the growth in microbial numbers occurs by cell division, 
spatial variations of the microbial population can be expected. For compact bacterial 
colonies growing on the surface of a solid growth medium, the colony morphology can 
be described by its height h(r, t )  above the surface. Since we will work in the continuum 
limit, h(r, I )  represents a course-grained description of the colony’s height profile. Thus 
it is reasonable, and convenient, to ignore any overhangs in the colony surface and 
assume that h(r, I )  is a single-valued function of the position of r in the surface. 

Consider the growth of a compact bacterial colony which occurs by the expansion 
and division of cells within the colony. The colony will grow in volume by expansion 
in a direction which is locally normal to the surface. Let the normal growth velocity of 
the colony be un, where n is the unit vector which is locally normal to the colony 
surface. The incremental change in height in time 61 projected along the vertical axis 
is then Sh=uSt[l +(Vh)2]1 ’2 ,  givingin the limit 6 t - 0  

ah/& = U [  1 + (Vh)2]”2WJ( 1 + (1/2)(Vh)2 + . . . ). (2.1 ) 

After the inclusion of a term to account for the relaxation of the colony surface and 
allowing for the possibility of a lateral growth anisotropy, the simplest nonlinear partial 
differential equation for the spatio-temporal growth kinetics of the colony surface in 
the absence of fluctuations can be written as 

ah(v, ();a?= vV2h(r, t )+u(r ,  h(r, t ) .  t ) [ l  + ( h / 2 ) ( V h ( r ,  t ) ) 2 ]  (2.2) 
where v is a mobility coefficient which can be identified with the surface tension and 
V z  is the Laplacian operator. The second term on the right-hand side of equation (2.2) 
represents the lowest order of growth term that can appear in a surface growth model. 
Such a nonlinear term must be expected in all situations where lateral growth is allowed 
and A characterizes the lateral growth anisotropy [ 7 ] .  If the normal growth velocity v 
was a constant, then equation (2.2) would be equivalent to the KPZ equation for surface 
growth in the absence of fluctuations [ 7 ] .  However in a bacterial colony U will, in 
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general, be a function of the time t ,  location I and local height h(r, f). In the following 
we will investigate colony evolution with model forms of V ( I ,  h(r, t ) ,  r) which correspond 
to different realizations of the physical processes controlling bacterial colony growth. 

For the growth of a colony with circular symmetry on a flat two-dimensional surface 
from an inoculum located at the origin equation (2.2) reduces to 

a&, t ) /a t  = (v/r)a/ar(r ahlar) + U( 1 + ( I z / z ) ( a h / a ~ ) ~ )  (2.3) 

which must be supplemented by the initial condition that h(r=O, t = O ) > O  and the 
boundary condition = 0. These initial and boundary conditions are conveni- 
ently met by assuming that the inoculation i s  in the form of a Gaussian located at the 
origin with 

h(r, O)/h(O, O ) = l ( r ,  u)=exp(-?/2cr2) (2.4) 

where h(0,O) and cr characterize the height and width of the colony at inoculation. 

3. The Pirt model 

In a pioneering study of the growth of bacterial colonies on the surface of a solid 
nutrient medium [4], Pirt noted, over a wide variety of conditions, a constant rate of 
increase of the colony radius while the thickness of the colony away from its outer 
periphery was approximately constant. To reconcile this observation with the well 
known exponential growth of cell number in liquid cultures Pirt introduced a geometric 
model for bacterial colony evolution. In this model the colony grows exponentially in 
a growth zone at its outer edges up to a maximum colony height, resulting in a flat 
central region. This model can be quantified within the context of equation (2.3) by 
writing the normal growth velocity as 

W r ,  O ) = W r ,  W - h ( r ,  O / h d  (3.1) 

where 1 is a growth coefficient and h, is the maximum height obtained by the colony. 
A logistic form has been assumed for the normal growth velocity as a simple functional 
form that defines a maximum colony height and gives locally exponential growth (ah/ 
dtcch) for the leading edges ofthe colony where h is small (h<<h,). Substituting equation 
(3.1) into equation (2.3) gives 

2 4 a t * = ( i / ~ )  ~ / S X  (x  a u / a . x ) + z r ( i - ~ ) [ i  + ( ~ / Z ) ( ~ U / ~ X ) ' ]  (3.2) 

whereu=u(x, t* )=h(x,  t*)/h,,x=(l/v)lRr, t*=Atand5=(Mhm2/v).Thisequation 
is supplemented by the initial condition that u(r=O, f =0) > O  and the boundary condi- 
tion (au/ar),=o=O. both of which are satisfied by the Gaussian inoculation of equation 
(2.4). 
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Figure 1. Radial height profde for a Pirt model of bacterial colony growth defined by 
equation (3.2) at Af=O,  4. 8, 12, 16,D for (a) 6 = 1 and (b)  e= 100. Gaussian inoculation 
with u(0, O)=O.l  and (u/h,)=2.5.  

First note that in the case of ( = O ,  equation (3.2) reduces to Fisher's equation [S] 
which is known to possess solitary wave solutions with an asymptotic dimensionless 
radial velocity of two [9]. Figure 1 shows the temporal evolution of the radial height 
profile of the colony obtained by solving equation (3 .2)  with zero gradient boundary 
conditions for two values of the parameter 6: t =  1 and t =  100. The initial condition 
was a Gaussian inoculation from equation (2.4) with u(O,O)=O.I and ( o / h m ) = 2 . 5 .  If 
we assume (Nzk /v )  = 1, these two cases correspond to growth by uniform expansion 
(A = 1) and a very large lateral growth anistropy (A = 100). In both cases the qualitative 
features of the solution are the same. After an initial period during which the central 
colony attains its maximum height, solitary wave behaviour is obtained in the colony 
height profile. The outer edge of the colony has a shape which is independent of time 
and moves at a constant radial velocity outwards form the origin. The location of the 
leading edge of the colony is denoted xo(t) and here defined by u(xo ,  1) = u(0 ,0 ) /2 .  For 
5<10 the colony height profile and the radial growth velocity (dr0/dt) are essentially 
independent of 4 and identical, within numerical accuracy, to those of the Fisher equa- 
tion with t = O .  However, for c>>lO significant departures in the shape of the colony 
around the leading edge from the results for t = O  are found and the radial growth 
velocity increases with 5. For example at (= 100 the radial growth velocity is found to 
be (dxo/dt) = 3.08 and figure 1 shows an increased asymmetry of the colony height 
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pro6le at the leading edge with larger 5. In principle 5 could be used as a free parameter 
to fit to experiment. But since solutions of the Pirt model are only weakly dependent on 
the degree of lateral growth anisotropy, this constitutes an ill-dehned inverse problem. 

The major assumption in Pirt’s model of colony growth is that the central region 
of the colony is flat and its height remains constant. However, experiments by 
Wimpenny [5] to measure the profile of bacterial colonies grown on solid nutrient agar 
show that the central height of the colony, like the colony radius, grows linearly with 
time, albeit at a speed at least an order of magnitude smaller. In addition, the radial 
height profile of the colonies was seen to be convex in contrast to the flat top of colonies 
in the Pirt model. Thus a model for the growth of bacterial colonies on a surface must 
take into account flux limited growth at the centre of the colony. 

4. Reaction zone in a biofilm 

The central region of a surface colony can be regarded to a good approximation as a 
biofihn comprising a layer of bacteria separating the supporting nutrient medium from 
the atmosphere. Aerobic growth of the bacteria within the biofilm requires diffusion of 
nutrient (C) and oxygen ( A )  into the biofilm and results in the addition of biomass 
( B ) .  A reaction scheme representing aerobic growth can be written in a highly simplified 
form as [IO] 

A -!- B + C+23 rate p .  (4.2) 
In addition there is also a maintenance requirement of the cells within the colony which 
can be similarly written as 

A + B+ C-B rate K .  (4.2) 
Let A(r,  t), B(r, r )  and C(r, t )  denote the local concentrations of species A ,  Band C a t  
position r and time t .  The coupled set of reaction-diffusion equations describing the 
spatio-temproal evolution of an unstirred system incorporating the reaction schemes 
(4.1) and (4.2) is conventionally given by 

&/at = DA V2a - (p + K )  abc 

abjat = D~ v2b  -!- p abc 

(4.3) 

(4.4) 
ac/at= D= v2c-(p + K) abc (4.5) 

where a(r, t) = A @ ,  t ) / A o ,  b(r, t )  = B(r, t)/Bm and c(r, t )  = C(r, t)/Co are dimensionless 
local concentrations. Note that within the framework of such a continuum model, local 
concentrations must be interpreted as coarse grained averages taken over a local volume 
which is typically much larger than the characteristic size of the component. A. and CO 
denote the uniform bulk concentrations of components A and C in their reservoirs, so 
that OQa(r, f ) <  1 and O<c(r, t ) < l .  B, denotes the biomass concentration consistent 
with a close packed configuration of cells in a colony. The Fickian diffusion constants 
of the three components are denoted D A ,  DB and Dc.  

Typically, DB<<DA=Dc. So for sufficiently small DB and sufficiently large p,  the 
local biomass concentration can grow up to, but physically cannot exceed, a value 
consistent with a close-packed configuration of cells. In such cases the set of equations 
(4.3)-(4.5) is unable to provide an accurate description of the spatial dependence of 
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microbial growth kinetics, since equation (4.4) does not constrain the local biomass 
concentration to the physically acceptable range O<b(r, t) < 1. If local biomass growth 
is restricted by physical constraints, then an additional term must he included in the 
equation for biomass growth to account for the non-local addition of cells at the surface 
of a close-packed colony as a result of the growth and reorganization of cells within 
the colony. This is achieved by replacing equation (4.4) with 

abfat=D,V'b+ y(Vb)'+pabcf(b) (4.6) 

where w is the non-local growth coefficient. The local growth limiting functionflb) is 
a monotonic decreasing function of b on the interval (0, 1) withf(0) = 1 andfll)  =O. 
A convenient form is 
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f l b )  = (1 -b") (4.7) 

where a = 1 corresponds to a logistic form for the local biomass growth rate. However, 
since physical constraints limiting the local addition of biomass should not be expected 
to arise until the local biomass concentration approaches the close packing value, 
typically a>>l. The non-local growth coefficient II, is determined from the constraint 
that the growth rate of the total biomass within the sample, defined by 

db(r)fdt= drab(r, r)/at J 
must be the same from both equations (4.4) and (4.6). Thus 

p drabe= dv[ ~ ~ , ( V b ) ~ + p a b c f ( b ) ] .  (4.9) S I  
Consider the particular case of growth of a biofilm of aerobic bacteria on the flat 

surface of a nutrient-rich growth medium under an oxygen-rich atmosphere from a 
uniform inoculation covering the surface. Neglecting edge effects and in the absence of 
fluctuations, concentration variations in the system will be unidimensional and normal 
to the surface. The equations describing the evolution of the system reduce to 

aafat=D, a2apz2-(p+K)abc (4.10) 

abfat=D,g a2b/Sr2+ v(c?b/az)2+pabcf(b) (4.1 1) 

ac fat = D= a2c f aZ2-(p + K)abc (4.12) 

where a(;, t ) ,  b(z, t )  and c(:, t )  are the dimensionless concentrations per unit area of 
biofilm. Components A and Care intially separted with 

a(z, 0) = I - c(z, 0) = (4.13) 

where e(-) is the Heaviside theta function (@(-)=a if z<O and e(;)= 1 if z>O) and 
the inoculum is assumed to have a Gaussian form with 

b(z, 0 )  = b(0, O)I(z, a). (4.14) 
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Figure 2. Spatio-temporal evolution of the component concentration prohles through a 
biofilm from equations (4.10)-(4.15) with k e d  boundary conditions, K =0, Dc= D,, (LIB/ 
DA)= 10.' and (JI/D,)"'L=M. Components A and Care initially separated and there is 
a Guassian inoculation for B with b(O,0)=0.2 and (a/L)=O.OS. The reduced biomass 
concentration profile b(z, 1)  is denoted by a solid line, while for clarity the continuous 
curves for the reduced oxygen and nutrient concenkations are represented by symbols: (0)  
for c(z, t) and (0 )  for a(=, t). Results are shown at times p r = O ,  40,80, 120, 160.200. 

Equations (4.10)-(4.14) are solved numerically on the interval - L S z S L  for L>>u 
with fixed boundary conditions at z= &L. The nonlinear growth coefficient is given 
from equation (4.9) by 

(4.15) 

For simplicity consider a symmetric system with no cell maintenance requirement 
such that DA = DC and K = 0. Figure 2 shows the evolution of the concentration profiles 
for DB/DA=lO-*, a=4  and (p/DA)"'L=5O with b(O,0)=0.2 and (u/L)=0.05. 
Initially the total biomass in the biofilm can increase as a result of the local addition 
of biomass alone. However, once the biomass concentration at the centre of the biofilm 
approaches close packing, biomass is added to the biofilm by both local and non-local 
growth mechanisms. The central region of the biofilm where abc#O constitutes the 
reaction zone of the biofilm and controls the magnitude of both local and non-local 
contibutions to the growth of biomass within the biofilm. For p t >  100 a(z, t )  and c(z,  f) 
achieve steady-state forms which are characterized by a linear decrease in concentration 
from the boundary reservoir to the reaction zone at the centre of the biofdm. The 
reaction zone also assumes a steady-state form for pi> 100 since the size of the reaction 
zone is smaller than the close-packed core of the biofilm. Thus in the steady-state regime 
biofilm growth occurs soley by the non-local growth mechanism. The two surfaces of 
the biofilm are located at z+(t) and z - ( t )  by a height condition, such as b ( z + ,  t ) =  
b(O,O)/2 for z>O and b ( z - ,  t)=b(O, 0 ) / 2  for z<O. In the steady-state regime both of 
the biofihn surfaces propagate at constant velocity away from the plane of inoculation 
and thus the thickness of the biofilm, defined as h( t )=(z+( t ) - z - ( t ) ) ,  will increase lin- 
early with time. The exponent a acts as a weak control on the shape of the biomass 
concentration profile through the bio6lm which becomes more rounded with decreasing 
a for a <4. This is a result of retardation of the local growth contribution well before 
the biomass concentration approaches close packing for such small values of a. Note 
that the linear time dependence of the biofilm thickness is not a result of the symmetry 
assumptions employed here, but also occurs for DA#Dc.  
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Thus for colonies of aerobic bacteria growing on the surface of a solid growth 
medium, the flux limited growth of the thick biofihn found at the centre of the colony 
can be expected. This will result in a linear increase in time of the central colony height 
due to the existence of a steady state, h i t e  sized reaction zone within the colony. 

5. Flux limited growth of colonies 

A more general colony growth model than that due to Pirt can thus be defined within 
the framework of equation (2.2) by writing the normal growth velocity as 

u(h(r, I ) )  = h min(h(r, t ) ,  h,) (5.1) 
where h, is now the maximum size of the growth zone of the colony. We have assumed 
this form for U, since it represents the simplest function that encompasses the required 
physical constraints. Thus substituting equation (5.1) into equation (2.3) we have 

&/at*= (i/x)s/ax(xaupx) +min(u, i)[i + ( ~ / 2 ) ( a u / a ~ ) ? ] .  (5.2) 
This equation must be supplemented by the initial condition that rr(r=O, t = O ) > O  and 
the boundary condition (au/ar),=o=O. 

Figure 3 shows the temporal evolution of the radial height profile obtained by 
solving equation (5.2) with zero gradient boundary conditions at two values of the 

15 - -. 
i o  & a 

5 5 zEsd 0 0 10 20 30 40 50 0 

X 

0 i o  20 30 40 M 
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Figure 3. Radial height profile for the model of bacterial colony growth defined by equation 
(5.2) at times Ar=4, 8, 12, 16.20. for (a) 5-  I and (b)  5=4. Gaussian inoculation with 
u(O,O)=O.I and (u,’h,)=2.5. The curve denoting the colony profile at inoculation would 
not be visible on the scale of this figure. 
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parameter 5 : 5 = 1 and 5 = 4. A Gaussian inoculation from equation (2.4) with u(0,O) = 
0.1 and (rr/h,) =2.5 was used as the initial condition. If we assume (Ahm2/v)= 1, these 
two cases correspond to uniform expansion growth (A= 1) and a significant, but not 
large, lateral growth anisotropy (A=4). After an initial period in which the colony 
attains a time-independent convex shape, both the height and radius of the colony 
propagate outward at constant velocity. The overall shape of the colony profile is 
markedly different from that found for the Pirt model and increasing values of 5 lead 
to more rounded colony shapes. An important quantity characterizing the solutions of 
equation (5.2) is 5 = [(dxo/dt)/(du(O, t)/dt)], which is a ratio of the radial to the vertical 
growth velocity. Numerical results for 5=1 show c=2.10, while for 5 = 4  we find c= 
2.75. Increasing 5 to much larger values leads to a dramatic increase in this velocity 
ratio. However, the central height velocity is only weakly dependent on 5 with (du(O,t)/ 
dt) = 0.93 at 5 = 1 and (du(0, t)/dt) = 0.96 at 5 = 4. For 5 > 8 the central height velocity 
obtains an asymptotic value of (du(0. t)/dt) = 0.98. Thus rapid increases 6 with increas- 
ing 5 for 5>8 are solely due to the radial growth velocity. Note that since the form of 
the normal growth velocity in equation (5.1) contains a discontinuity in gradient for 
h=h,, there is a corresponding discontinuity in gradient in the radial height profile of 
the colony although this is not marked for 5 ~ 8 .  Comparison with experiment [5,6] 
suggests that solutions of equation (5.2) display the characteristic features of surface 
colony growth. 

6. Discussion 

We have introduced a continuum model for the spatio-temporal growth of bacterial 
colonies on the surface of a solid substrate which utilizes a reaction-diffusion equation 
for growth. The key element in the model is the functional form of normal growth 
velocity v which is determined by the microscopic mechanism controlling growth within 
the colony. Fluctuations could be included within this model by replacing U with (U + q)  
where q is an appropriate noise term. Then, for constant v the resulting stochastic 
differential equation for surface growth would be of the type studied in the small noise 
amplitude and small gradient limit by Vicsek et a1 [I I ]  with quenched randomness and 
by Kardar et a l [ 7 ]  for time-dependent noise. For colony growth from equation (2.2) 
in the flux-limited regime with u[min(h(r, I), h,) + q ]  such an approach could only be 
valid on the top surface of a bacterial colony where h(r, t )  > h,. Kinetic roughening 
observed near the leading edge of the colony where h(r, t )  < h, will not, in general, 
display the same class of roughening behaviour as the top surface of the colony. Discrete 
particle effects are of key importance in determining the roughening at the leading edge 
of the colony and this problem is considered elsewhere within the context of a gen- 
eralized Eden model [12]. 
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